A silver lining to this (eruption) cloud

A silver lining to this (eruption) cloud

As it captivated people around the world, the January eruption of the Hunga Tonga-Hunga Ha’apai volcano gave scientists a once-in-a-lifetime chance to study how the atmosphere works, unlocking keys to better predict the weather and changing climate.

The volcano, located in the South Pacific nation of Tonga, became active on December 20, 2021, and erupted on January 15, 2022. The blast obliterated one of the country’s many islands and was described by NASA as more powerful than an atomic bomb.

UMass Lowell’s Mathew Barlow, professor of environmental, earth, and atmospheric sciences, was among an international team of scientists who studied the atmospheric response to the eruption, the likes of which have never before been recorded. The group’s findings were published in the preeminent scientific journal Nature.

As part of his work, Barlow created an animated video from satellite data that shows the eruption’s dramatic effects. The event saw atmospheric waves pulse around the globe several times and stretch from Earth to the edge of space, some at speeds of nearly 1 160 km/h. The eruption also shot a plume of water vapour almost 50 km into the air, along with volcanic ash, soil, and smoke. A short video produced by the researchers summarises the effects.

“Some of the wave types the Hunga Tonga generated are very important to understanding how the atmosphere works and our ability to make effective computer models for weather forecasting and climate projections,” said Barlow, a faculty member in UMass Lowell’s Climate Change Initiative. “Through the expulsion of particles into the high atmosphere, some strong eruptions can also have a cooling effect on the climate, though the amount produced by Hunga Tonga does not appear sufficient for a notable climate effect, unlike other volcanic eruptions over the last century like the Pinatubo eruption in the Philippines in 1991.”

According to Barlow, the Hunga Tonga explosion appears to be the strongest single burst of volcanic energy released in 140 years, since the eruption of the Krakatoa volcano in Indonesia in 1883. Coupled with advances in satellite imagery, the strength of the Hunga Tonga eruption gave scientists an unprecedented view of atmospheric waves. Barlow said he and fellow researchers were able to analyse its effects in near-real-time communication with agencies across the globe.

Published by

SHEQ Management

SHEQ MANAGEMENT is the definitive source for reliable, accurate and pertinent information to guarantee environmental health and safety in the workplace.
Prev Social media SANS adopted
Next Natural “plastics” on the horizon?

Leave a comment

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.